
t

A Scalable Nonuniform Foiriter Andy-sis for
Embedded Pmgrams*

NXSX Ames Research Center / Kestrel Technology
Moifett Field. CA 94035. USA

Abstract. In t h s paper we present a scalable pointer analysis for em-
bedded applications that is able to distinguish between instances of re-
cursively defined data structures and elements of arrays. The main con-
tribution consists of an efficient yet precise algorithm that can handle
multithreaded programs. We first perform an inexpensive flow-sensicive
analysis of each function in the program that generates semantic eqiia-
t.ions describing the eifect of the function on the memory graph. These
equations bear numerical constraints that describe nonuniform points-to
relationships. W-e then iteratively solve these equations in order to o b
tain an abstract storage graph that describes the shape of daca structures
at every point of che program for all possible thread interleak-ings. We
bring experimental evidence that this approach is tractable arid precise
for real-size embedded applications.

1 Introduction

The difficulty of statically computing precise poinrs-to information is a major
obstacle to the automatic verification of real programs. Recent successes in the
verification of safecy-critical software [BCCT03] have been enabled in part be-
cause this class of programs makes a very restricted use of pointer manipillations
and dy-mmic memory allocation. There are numerous pointer-intensive applica-
tions that are not safety--critical yet still require a high level of dependability like
unmanned spacecrafc flight control: flight data visualization or on-board neta-ork
management for example. These progams commonly use arrays and linked lists
t.0 stcore pointers to semaphores; message queues and data packets (for interpro-
cess conmunication), partitions of Lhe memory: etc. Esisting scalable pointer
analyses [Ste96,FFSASS:DasOO,HTOl] are uniform, i.e. they do not distinguish
between elements of arrays or components of reciirsive data strucwres and are
therefore of little help for the veri6cacion of these programs. It is the purpose of
this paper to address the problem of inferring noniiniform points-to information
for embedded programs.

Few nonuniform pointer analyses have been studied in the literature. The first
one has been designed by Deutsch [Deu53.Deu94] and applies to programs with

* This work was supported in part by the R,TD project IST-1999-20527 DAEDALUS
of the eiiropean IST FF5 programme.

?

explicit data type annotations. We first redesigned Deutsch's model in order to
analyze languages like C in which the type information cannot be trusted to infer
she shape of a data structure [Ven96:'i;en99]. However both approaches rely on
a costly representation of the aliasing as an equivalence relation between access
paths: which makes t h s kind of analysis inapplicable to programs larger than a
few thousand lines. We therefore designed a new semantic model [Ven02] that is
both more compact and more expressive than the one based on access paths. The
interest of the latter approch lies in the representation of dynamic memory allc-
cation using numerical timestamps, which turns pointer analysis into the classical
problem of computing the numerical invariants of an arithmetic program. In the
case of a sequential program, various optimization techniques can be applied that
break down the complesity of analyzing large arithmetic programs as described
in [BCCi02,BCC'03]. In the case of multithreaded arithmetic programs how-
ever; there are no proven techniques that can cope with shared data and thread
interleaving efficiently and precisely. This is a major drawback knowing that
most embedded applications are multishreaded.

In this paper we present a pointer analysis based on the semantic model
of [VenO2] that can infer nonuniform points-to relations for multithreaded pru-
grams. From our experience with the verification of red embedded applications
we observed that collections of objects are usually manipulated in a very reg-
ular way using simple loops. Furthermore, these loops are generally controlled
by local scalar variables like an array index or a pointer to the elements of a
list. It is quite uncommon to find global array indices or lists that are modi-
fied across function calls. 'Therefore, the information flowing through this local
control structure is sufficient in praaice to describe exact!y che layout of ar-
rays and the shape of linked data structures. We call it the svrfuce structure
of a program. In the new model proposed here we first perform a flow-sensiiive
analysis of the surface structure that automatically discovers numerical loop in-
variants relating array positions ana timestamps of dynamically created objects.
We use these invariants to generate semantic eqiiatiaris t.hat model the effect of
the function on the memory. We then iteratively solve the system made of the
semancic equations generated from all functions in the program. -4 similar ap-
proach has been applied in [\\TO?: for improving the precision of inclusion-based
flowinsensitive pointer anaiyses. Our model can be seen as a natural e.?rtension
to hdersen ' s algorithm jAnd94j in which variabies are indexed by integers de-
noting array positions and timestamps. and inclusion constraints bear numerical
relations between the indices of variables. We will carry on the presentation of
the analysis with this andogy in mind.

The paper is organized as follows. In Sect. 2 we define the base semantic
model and the surface structure of a C program. The semantics is based on
t imestaqx to identi+- instances of dynamically allocated objects. Section 3 de-
scribes the abstract interpretation of the surface structure and the inference of
numerical invariants. In Sect. 4 we show how to generate nonuniform inclusion
constraints from the numerical relationships obtained by the analysis of the sur-
face structure. The iterative resolution of these constraints provides us with a

c

giobal approximation of the memory graph. We describe the impiementation of
an analyzer for the full C language in Sect. 5 and give some experimental re-
sults from the analysis of a real device driver. We end the paper with conciuding
remarks and future work.

2 Base Semantic Model

In [VenOl‘] we have introduced a semantic model that uniquely identifLes instances
of dynamically allocated objects by using timestamps of the form (A,, . . . , A,)
where the A, are counters associated to each loop enclosing a memory allocation
command. Consider for example the following piece of code:

Example 1

f o r (i = 0; i < IO; ii+)
f o r (j = 0; j < 3 ; j++)

a C i l [j l . p t r = malloc (. . .) ;

In that model we would mB%Xertlie coiiple (i, f) % a~timestamFfor distinguish-
ing between calk to the rnalloc command. In this paper we use a simplified model
which folds all nested loop counters into one. In the previous example, this would
result into considering the timestamp 3 i f j . This amounts to having one global
counter A that is incremented whenever the execution crosses a loop and is reset
to 0 whenever the execution exits an outermost loop. Vlihile both modeb are
equivalent in uniquely identifglng dynamicalIy allocated memory, the loss of in-
formation about nested loop counters may lead to imprecisions when timestamps
are represented by abstract numerical lattices [Kar76,CH7S,GraSl,MinOl], This
is not an issue in embedded applications since almost all loops have constant
iteration bounds and arrays are traversed in a regular way as in the example
above. This type of loop invariants can be eEciently and exactly computed by
using the reduced product [CC79] of the lattices of linear equalities [Kar76] and
intervals [CC76] for example.

Because C allows the programmer to change the layout of a structured block
via aggressive type casts, using symbolic data selectors like in [T;en02] for repre-
senting points-to relations is quite challenging (see [CR99] for a detailed discus-
sion of type casting in C). In OIII case this would make the analysis overly compii-
cated since we also hai,-e to cznaze numericai cocstr:tints that re!aie timestamps
and positions within blocks. &-e choose a simple solution that consists of using a
homogeneous byte-based representation of positions within memory blocks. This
means that a field in a structure is identified by its byte oifset from the beginning
of the structure. As a consequence we must take architecture-dependent charac-
teristics like alignment and padding into account. Fortunately, most C front-ends
provide this information for free. In such a model an edge in the points-to graph
has the form (a: o) D (a’: 0’) where a. a’ are addresses of blocks in memory and
0: o‘ are byte oifsets within these blocks.

Our purpose is to abstract a C program into a system of points-to equations
expressed by inciusion constrainzs simiiariy to Andersen‘s analysis [rZnd94]. Since

.

Stmt ::= n = c (e E w
I n = m + o
I n = m x o
I p = & x
I p = q + n

P = "9
*P = 9
p = mslloc()
while (a < n) do ~ 1 , . . ; sn end

Fig. 1. Syntax of che core pointer language

we want to express nonuniform aliasing relationships, we need to assign position
and timestamp indices to semantic variables and relate them by using numerical
constraints. For example, we would like to generate an inclusion constraint for
the piece of code of Example 1 that looks like:

*(&at (i x s t oprr)) 2 malloct where i = t A t E [O; 291

where s is the size of the structure contained in the twedimensional array.
opt= is the oEset of the field p t r in that structure and t is the timestamp
of the memory allocation statement. In order to infer this kind of constraint
we must first perform a Aom-sensitive analysis over a relational numerical lat-
tice 1E(ar76,CH~S,GraSl,MinOZ] that computes invariants relating loop counters,
array indices and timestamps. The main difference horn [Ven02] comes horn the
fact that we generate inclus,io.n_Cpns~raints without any prior knowledge of the
iayout of objects in the heap. in this case it is not obvious what to do with the
follom-ing piece of code:

Example 2

f o r (i = 0; i < 10; i++) C
p = p->next;

i

The rest of 5is section wd! be des.oced to defiriing a cmcrete senanxic mode!
thax will allow us to handle this situation simply and precisely.

We base our semantic specification on a small languase that captures the
core pointer arithmetic of C at the funexion level. The treatment of interproce-
dura! mechanisms is postponed until Sect. 4 where we will detail xhe generation
of inclusion constraints. We call surface variuble a variable which has a scalar
type! either integer or pointer: and which does not have its address taken. The
synt&y of the language is defined in Fig. 1, where we denote by p, q: r pointer-
valued surface variables, by m: n: o integer-valued surface variables, and by x: y: z
all other variables. W-e assume that the variable on the left handside of an assign-
ment operation does not appear on the right handside. This will facilitate the
design of the numerical abstract interpretation in Sect. 3. It is always possible
to rewrite the program in order to satisfy this assumption. Note that in order
to keep the presentation simple, we focus on fundamental arithmetic operations
and loops. -411 other constructs can be analyzed along the same lines. We use

this language to model the computations thai occur iocaily wichin the body of
a C function, excluding calls t o orher fimctions. A program P in this IanpuaFe
is just a sequence of statements describing the pointer manipuiations performed
by a function. We provide P with a small-step operational semantics given by a
transition system (E, -+) defined as follows.

We first need some notations. ‘VVe assume that each statement of P is assigned
a unique label !. If ! is the label of a statement. we denote by next!!) the label of
the next statement of P to be executed in the natural execution order. If ! is the
label of a loop we denote by top(!) the predicate that is true iff the statement
at e is an outermost loop. A state of C is a tuple (X,M,c,,!) where X is an
integer denoting the global loop coonter used for timestamping, hl is a ineiiloiy
graph, e is an environment and ! is the label of the next statement to cxecute.
A memory graph is a collection of points-to edges (a! o) D (a’, 0’) where a; a’ are
addresses and o,o‘ are integers representing byte offsets. An address is either
the location of a global wriabie Six or a dynamically allocated block blke(t),
where is the location of the allocation statement and t is a timestamp. We use
a special address null t o represent the NULL pointer value in C. The mapping
defined by a memory graph is functional, i.e. there is at most one outcoming
edge for each memory location (a: 0). We denote by M(a: 0) the target location
of the edge originating from the location (a; o) if it exists or (null, 0) otherwise.
We denote by M[(a, 0) D (a’, o’)] the memory graph M which hm been updated
with the edge (a, 0) D (a’; 0’).

We split down each pointer variable p into two variables p a and pa that re-
spectively denote the address of the block and the offset within this block to
which p points. An environment e maps variables n7po to integers and variables
p a to addresses. \\-e denote by e[. - ‘u] the environment c, in which the variable
u has been assigned the value ’u. Finally, we denote by R a special element of
C representing the error state. The transition relation -+ of the operational se-
mantics is then defined in Fig. 2. An initial state in this operational semantics
assigns arbitrary integer values to surface integer variables and the null memory
location to surface pointer variables. This amounts to considering integer vari-
ables as uninitialized and pointers initialized to NULL. For consistency the initial
value of X should be 0. In our framework an initial state describes the memory
configuration at the entry of the C function that is modeled by the program P.

The transition rule for loop exits requires some explanations. The global loop
counter X is incremerted at the end of each loop iteration and decremented when-
ever the execution steps om of a nested loop. Wlether the g!oba! loop counter
is decremented or leh unchanged at loop exit has no effect on the uniqueness
of timestamps. However decrementation is required in order to preserve linear
relationships between X and byte oEsets during the traversal of multidimensional
arrays. Consider the two nested loops of Example 1. We keep the previous n e
tations and we denote by 0 the byce ofiset within a on the lefthand side of
the assignment. Then, the relation between 0 and the loop counters is given by
0 = 3 x s x i +- s x j + If we use the decrementation rule at loop exit: the
global loop counter value is given by X = 3 x i ?- j, hence 0 = s x X + optr.

-

(A, M, g, e : p = malloct)) -+ (A, kf, _oba - blke(,\),p, - 01, next(!))
R if g(p,) = null (A, 12.1, e, e : *p = q) -+

(O , M , ,o! next(!)) if g(m) 2 g(n) and top(!)
(A - 1, M , g: next(!)) otherwise (A, hf, g, e : while (m < n) do . . . end) -

(A, M; g:! : end) - (A -+ I: hf, e , e' : while (. . .) do . . . e : end)

Fig. 2. Operational semantics of the core poinr,er language

Without this rule X would be equal t o 4 x i f j and the relationship between
the global loop counter and 0 would be lost, thereb?. preventinz the infwrnce
of a nonuniform points-to relation..

This operational semantics is similar to the one described in [\-en021 with
a simplified timestamping. We need t o instrument the semantics by adding an
insermediate layer between the environment and the memory that keeps track of
all memori; accesses. \\-henever a location is retrieved from the memory, we use
a timestamp to tag it with a unique name that we call an anchor, and we keep
the binding becween this anchor and the actual memory location in a separate
structure A called the anchorage. The local environment ,o now maps the address
component of a surface variabie p a either to an address that explicitly appears
in the body of a C !3xiction or to an anchor. We call this refined semantics the
surfme seman,t:cs. More formally, the surface semantics (Xsz -s) of a prograc
P is defined as follows. A emended smte of 1, is a tuple (X, -4: Ad; e: e) where
(A , M. 0; e) E 2 and A is an anchorage. An anchor refejt) denotes the value
returned by the execution of a memory read command e : p = *q at program
point .! on time t . The anchorage maps an anchor refe(t) to an acr;ual memory
location (2, e) . If (c, 0) is a location stored io the enviroLxrenr; p , a ~ a y eiIher
be an address or an anchor. We define the resolution function get, which maps
(a, o) to the corresponding memory location as follows:

(null, 0)

(a: 0)

if a is an anchor and A(u) = (null, 0)

if a is an address a
(a: o + 0') if a is an anchor and A (a ,) = (a, 0')

If p is a surface pointer and Q is an environment, we denote by getA,,(p) the
memory location get_l(y(p,), ,o(po)). The transition relation -s of the surface
semantics is then defined in Fig. 3. The error state in this semantics is also

Fig. 3. Surface semantics of the core pointer language

denoted by 0. -4n init.ial state in the surface semantics is simply an initial state
in the base semantics with an empty anchorage. TVe denote by- I the set of all
initial states.

We are interested in the collectzng semantics [Cou8l] of a program P, that
is the set C = {i zs s j i E I } of all states reachable from any initial state I . We
define the .surface structure S of P as follows:

s={(X,&e) I3k I3 -4 : (x,.4,M,Q:e) EC)

r?Ln element (/Lo,[) is called a svrfuce con$gurution. The program P models
the pointer manipulations performed by a single C function. Our purpose is 60

compute a global approxhation of the memory for a whole C program by first
performing an abstract interpretation of the surface structure of each function
in the program. The design of this abstract interpretation is straightforward
because the surface structure is independent from the data stored in the heap and
does not interfere with other threads. We will then generate inclusion constraints
from the results of the analysis of the surface structure that will provide us with
a global approximation of the memory and the anchorage structure as well.

3

We describe the analysis of the surface structure within the framework of Ab-
sciact Iiiterprecatioii [CC;T,CCTS,C~:r;81,CC92]. We desne a= abstract nnviron-
merit by a pa- (vi, d) s fol!ows:

- The component vg is an abstract numerical relation belonging to a given
numerical lattice V t [KarTG,C”iS,GraSl,MinOl] that we leave as a param-
eter of our analysis. The abstract relation vd is a collection of numerical
constraints between all integer valued variables n. po of the program and a
special variable -1 denoting the w!ue cf the global loop counter.

Abstract Interpretation of the Surface Structure

- The component ;ri maps every variabie po to a set of abstract addresses.

An abstract address is eicher the address of a globai variabie Bx, a dynamically
allocated biock biki(p;j oi an anchor ref{;pL:j, where p: is a absnact numerical

Fig. 4. -4bstract surface seman-iics of atomic statements

relation between the loop counter variable A and a special timestamp variable
denoted by T . We assume that for each set of abstract addresses, there is at most
one abstract address blk!(pj) or ref:(pd) per program location e . Therefore; the
set E: of all abstract environments is isomorphic to the product JJIzEI L'd of the
numerical lattice over a fixed family I. We provide EL with the structure of a
!actice by lihing all operations of l i d to Eo pointwise.

(dj of an abstract, numerical relation is a set of variable
assignments E that satisfy the numerical consuaints expressed by vy . If z1 ~ . . . z,
are nmsricai variabies and 2'1, . . . ~ v, are integer d u e s , we denote by v; (zl H
V I : . . . , zn a,) the predicate that is true iff there is an assignment E E -/vi (d)
such that ~(z,) = v, for all 1 5 i 5 n. The denotation -/E: (d, d) of an abstracr;
environment is the set of all pairs {A. _o) where A E IN and Q is an environment
of the surface semantics. such that:

The denotation

An abstract surface configuration of the program is a family (vj] 7 i j) e E ~ o c (p) of
abstract environments, one for each location e in the program P considered. We
provide the set of all abstract surface codgurations with a lattice structure by
pointwise extension of operations from E$. The denotation ~ (v ! , T ~) ~ ~ L ~ ~ (~) of
ans abstract configuration is the set of all surface configurations (A, Q, e) such
that (A, co) E T ~ Y (vi, ire).

Following the methodology of ilbstract Interpretation, we must now d e h e
the abstract semantics of the language. We first have to define some operations
on the abstract numerical lattice Va. If vfi E VG and V is a set of variables:
we denote by vy 8 V the abstract numerical relation in which all information
about variables in V has been lost, and by ivrJv the relation that only keeps

* r

ip2ormation for variables in 1’. If S is a system of arbitrary nuniericd coli-
straints, we denote by v y S an abstract nimerical relation representing all
variable assignments that are in ihe denotation of u: and that-, are also solutions
of 5’. If 21 is a variable, we denote by us[, := 2’ f c] the operation that con-
sists of adding the increment c to the value of n. The implementation of these
operations depends on the abscract numerical lattice considered, and we refer
the reader LO the corresponding papers for more details about the underlying
algorithms [CC76,Kar76,CH78 ,Gra91 JvIinOl]. Vie assign an abstract semantics
[s]g : E2 - E3 to each atomic statement s of the language as defined in Fig. 4.

If (vr, d) is an abstract environment, we define the result (v?: 5:) of the
operation inc,I($J; d,) as follows:

We define the operation dec.h(v:, 7ii) (resp. reset.,i(vi, +)) similarly by substi-
tuting the operation A := -4 - 1 (resp. A := 0) to -4 := A + 1. The abstract
semantics of a program is then given by the least solution of a recursive system
of semantic equations

where Fe is defined as follows:

- If k‘ = next((‘) and e’ is the location of an atomic statement s, then

- If e’’ : while (UI < n) do l! : s; . . . ;e’ : end, then

- If L? = next([’) and L?’ : uhile (m < n) do . . . end, then

We apply classical fixpoint algorithms based upon iteration sequences with widen-
ing and narrowing [Cout?l;CC92] in order to obtain an upper approximation s$
of the least fixpoint of the system.

T h e o r e m 1. Si 2s a sound approxamatzon of the surface semantacs, 2.e. S &

For example. consider the following program in our core pointer language that
511s in an array a of pointers xt!: ncn-!y al!ocated bloc!is

Example 3.

1:
2:
3 :
a:
5:
6:
7 :
8 :

n = 0 ;
vhile (n < 10) C

q = &a;
p = q + n ;
r = malloc0;
*p = r;
n = n + l ;

1
i f we use the lattice of convex poiyhedra [CEB] as the numericd lattice V i ,
then the abstract environmenx obtained after analysis of the surface structure
ar program point 6 is:

assuming that pointers occupy four bytes in memory.

4 Nonuniform Inclusion Constraints

We now use the analysis of the surface structure to build a global appro‘xima-
tion of t h e memory graph. For this purpose we use an extension of -4ndersen’s
inclusion consTiaints [_llndS$ enriched with numerical indices that allow us to
describe nonuniform points-to relations. The syntax of a nonuniform inclusion
constraint is the following:

where t. t’; o are specid index variables denoxing timestamp and o k e t values
and X, y are set variables. We assume that we are provided with a countable
collection of set variables. The second component vj of a nonuniform constraint
is a system of numerical relationships between the index variables appearing in
the constraint.

The semantics of a system of nouniform constraints is based upon an abstract
memory graph. An abstract memory graph M’ is a set of abstract points-to
relations

(a(t , 0) D a’(t’, o’), vi(t, t:: 0; 0’))

where a: a’ are addresses and t: t’: 0, 0’ are special index variables representing
the timestamps and offsecs associaced to each address. The abstract numerical

relation vi expresses numerical constraints between these index variabies. The
set iLig of abstract memory graphs can be provided with the structure of a
lattice by point.wise extension of che corresponding lattice operations over V i .
The denotacion -/,,,l~(Mi) of an abssract memory- graph is the set of memory
graphs such that the oEsets on the points-to edges satisfy the constraints of the
corresponding abstract edges. A valuation V-‘ of set variables is a set of mappings

(~ (t) ++ a(t’) + o,vc(t: t’: 0))

where a is an address and t , t‘, o are numerical index variables. The set lid of
all valuations can similarly be provided with the struccure of a lattice. Xote that
in the case of the address of a global &-x, the associated timestamp variable does
not have any meaning and is not related by any numerical constraint. We use a
uniform nocation in order to keep the semantic definitions simple. A valuation
can be seen as an abstraction of the anchorage structure defined in Sect. 2. The
semantics [C]? : M $ x Val‘ - hf! x Vu@ of a nonuniform inclusion conszraint
C is defined as follows:

where we have freely renamed the index variables whenever it was necessary to
avoid name clashes. A solution of a system S of nonuniform set constraints is a
couple (M j : V-:) which is invariant under the application of [C]g for any C E S.

We are interested in the least solution of a system S of conuniforrn set con-
straints. We can obtain an approsimation of the least solution of S by computing
the limit of the abstract iteration sequence with widening (M i . defined
as follows:

E-here ([C9‘);7Es denotes the application of all conssraints of S in an arbi-
trary order, and V is the product of the widening operators on M ? and V-uld.
This provides us with an effective algorithm for computing an approximate s e
lution of the system, which is similar to that defined by Andersen [AndSd].
The main difference is the use of a widening operator to enfmce convergence
because some abstract numerical lattices have infiniLely increasing chains of
elements[CC’i6,CH76,MinOl]. Once a post-fkpoint has been reached using this

algorithm, we can further r e h e the result by using a decreasing iteration se-
quence n-ith narrowing defined in the same way. We observed from our esperi-
ments that an iteration sequence with narrowing is always required in order to
obcain precise ranges for the timestamp and offset variables.

We now have to show how to extract nonuniform inclusion constraints from
the abstract interpretation of the surface semantics. Let SI be the abstract sur-
face semantics of a program P obtained from the analy-sis described in the previ-
ous section. We assign a unique pair of set variables (Le, Re) to each statement
e : *q = r or e : q = +r of P, denoting respectively the points-to sets of the
lefthand and righthand sides of the assignment. Let gr = (vi> T ~) be an abstract
environment, p a pointer variable of P and X a set variable. We denote by
C.?,, (8) the collection of nonuniform constraints defined as follows:

- If &x E d (p a) : then

(X (t) 2 s i x -k 0 , [v ~ @ {t = A: o = po}]t,,) E Cx,,(p’)

- If blk{(pj) E d (p a) , then

(.Y(t) 2 blke(t‘) +- 0 , [v‘ fi pi 6 {T = t’; t = 11.0 = p,)Jt,t,,o) E Cx,,($)

- If ref;($) E d i p a) , then

(X (t) 2 &(t’) + 0, IJ n p’ E {T = t’, t = A: o = po}J~,v,,) E C,Y;~(QR)

Xow, if e : *p = q is a memory write ssatement of P and $ is the abstract
environment of S1 at e, we generate the constrairtts:

CL&) u C7?+{P”) u {(*&(t) 2 ae(t’;; T,2 9 {t = t’})}

Similarly, for a memory read statement t ; *p = q we generate t,he constraints:

~ L < , , (Q ’) u C ~ ~ . ~ (Q ’) u T(~:e(t) 2 *Re(t’), vu s {t = t’))}

We denote by S p the system of all conssraints generated in this way for the prc-
gram P. Let (Mi2 V:) be an approsirnation of the least solution of Sp obtained
by an abstract iteracion sequence m described prel-iousiy. The abscract memory
g a p h M i is a sound global approximation of the memory graph at every point.
of the program:

Theorem 2 . For all state (A, A: M , Q, e) of the collecting semantics C of P, we
have M E Y - , ~ : (Mi).
The pointer analysis problem of [VenO2] has thus been reduced to the simpler and
more tractable problem of solving a system of nonuniform inclusion constraints.

We finish this formal description with a brief description of the constraint
generation for function calls. We associate a special set variable F;(f) to the
i-th formal parameter of each function f of a C program. We denote by &(f)
the variable corresponding to the return value of f. Now consider a function

call l : p = f (pl: . . . ! p2). -4ssuming that we are provided with a collection
X: . . ~ X,, of set vwiables describing the sets of addresses that may flow
through the return value and the parameters p, pl , . . . ~ pn of the function call:
we generate the following points-to equations:

(?I (f) 2 Xl, Tv:)

(?*if) 2 x n ; 1 v1)

. . .
- r (X 2 Fo((f):Tvcj

In other words, function calls are treated unzjonly: there are no numerical con-
straints on the index variables. This is not a problem in practice, since nonuni-
form behaviours usually take place at the function level in embedded applica-
tions. We do not detail the analysis of computed calls; which can be easily derived
from the semantics of the memory read operation p = iq.

We now illustrate the generation of equations. Consider the small program
of Example 3 that 611s in an array of pointers. The equations generated after the
surface anaiysis are the follom5ng:

(*&(t) 2 R6(t’); {t = t’, 0 5 t < 1 0))
(&(t) _> &a t 0, (0 5 o 5 4 x t)) i (7&(t) 2 blk5(t’) t 0, {t = t’; 0 = 0; 0 _< t < 10))

Aher solving these constraints by using an abstract iteration sequence with
widening, we obtain the following abstract memory graph:

{ ((& - a , o) D (b l k ~ (t) , o ‘) , { o = 4 ~ t ,o ’=O,O < t < 10)))

which describes the exact shape of the memory althrough the execution of the
program.

5 Experimental Evaluation

We have implemented the static analysis described in this paper for the full
C language. The analyzer itself consists of 9,000 lines of SML/N.J escluding
the front-end. We have interfaced the analyzer with the ckit \HOh\I] C iront-
end which is also written in SML. We currently use the reduced product of
the lattice of linear equalities [Kar76] and the lattice of intervals [CC76] for
expressing numerical constraints. The analyzer first translates the C program
into an intermediate language in which all eqxessions and statements have been
broken down using a 3-address format. We then perform a dependency analysis
which is used to eliminate all arithmetic operations that are not ifwolved in
pointer manipulations. This substantially shrinks down the size of the code to
azalyze. lV%ole structure assigEmen6 has not been described in this paper and
deserves some attention. There are two possible ways of handling this construct?
either by expanding the assignment into a collection of individual assignments t o
the fie!& of the structure or by zna!yzing the assi-pnent, as a.n a tomic operation.

The former is made difiicult by union types and structure-breaking type casts.
We chose the latter approach, which requires a straightforward extension of
nonuniform constraints in order to copy a packet of pointers at once.

We have applied the analyzer to a red piece of software: an on-board link
controller. The application contains about 25,000 lines of unprocessed C code.
It is a pointer intensive program with plenty of loop constructs operating on
multidimensional arrays of StrucxCuTes. It is quite representative of an average
size embedded program, which is the main target of our analysis. Very large
programs like those described in pB04] are quite unusual. Our analysis is quite
elficient. It takes E10 seconds to parse the files, construct the abstract surface
semantics and generate the nonuniform inclusion constraints on a laptop with
a 900hfhz Intel Pentium and 1Gh of R A M running L,inux under VmWare. The
resolution of these constraints only takes 21 seconds.

The results show that the analysis does discover nonuniform points-to rela-
tions. In particular: bidimensional arrays of distinct semaphores, arrays of func-
tions and tables of predlocated memory blocks for dedicated memory manage-
ment are exactly described. Surprisingly enough, the analysis uncovered a real
bug in this application. Whiie we were reviewing the results of the analysis we
noticed that for some array array2 of dynamically allocated semaphores, there
was no linear relationship betwren the oifset and the timestamps in the points-To
relations. The nonuniform points-to equations gave us instantly the location in
the program where the array was initialized. The initialization code looks like:

f o r (i = c; i i 25; i -rtj
for (j = 0; j < 8 ; j++) {
array1 [il [jl = semcreate 0 ;
array2CjI = semcreate 0;

}

The first array is properly initialized whereas the second one is reinitialized
multiple times, causing a memory leak. It should be noticed that the analysis
sucessfiilly inferred a nonuniform points-to relation for the bidimensional array
of Semaphores. This bug was presenr; from the very first version of the program
and h'?s never been detected during the 1s months the sofcware has been under-
going tescing so far. This is an interesting application of this static analysis as a
sophisticated typechecker for collections of pointers.

6 Conclusion

We have presented a pointer analysis that is able to infer nonuniform points-to
relationships without the cost of existing flow-sensitive analyses [Deu94,Ven02].
The originality of our work is that it conciliates two approaches to pointer anal-
ysis; abstract interpretation and constraint-based analysis, which are often op-
posed one to each other. Although we could have expressed the whole analy-
sis within the framework of Abstract Interpretation [CC95j, we think that a

constrain-based presentation is more compact ana more intuidve for both un-
derstanding and implementing the analysis. Vie have shomn on a representative
case study thac our approach is tractable and achieves the expected level of pre-
cision. Unexpectedly, this analysis has been able to detect a subtle initialization
bug in a real application. It now remains to perform more extensive empirical
studies and investigate the use of the analysis in a real verification tool.

References

[-And94] L. Andersen. Program Analysis and Speczali-ation for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. hlauborgne, -4. Mine, D.
Monniaux; and X. Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded sofzware, in-
vited chapr;er. In T. Mogensen, D.A. Schmidt, and I.H. Sudborough, editors,
The Essence of Computataon: Complexitv, Analysis, Transformation. Essays
Dedicated to Neil D. Jones, LNCS 2566, pages 85-108. Springer-Verlag, Oc-
tober 2002.

[BCC’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. hlauborgne, A. Mine, D.

[CC76]

[CC77]

[CC79]

[CC92j

[CC9.5]

[CH;aj

[C O U ~ ~]

[CR99l

Monniaux, and X. Rival. A. static anaiy-zer for large safety-critical soft-
ware. In Proceedings of tne ACM SIGPLAV 2009 Conference on Pro-
gramming L,anguage Design and Implemzntation (PLDI’O3), pages 196-207.
ACM Press, June 7-14 2003.
P. Cousot and R. Cousoc. Static decerminacion of dynamic properties of

pages 106-130, 1976.
P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of hpoints. In
Proceedings of the 4th Symposium on Principles of Programming L,anguages,
pages 238-353, 1977.
P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Conference Record of the 5 2 t h Annual ACJV SIGPLAA?-SIGACT
Symposzum o n Princapks of Programmzng Languages; pages 269-282. ACM
Press, New York, -W, 1979.
P. Cousot and R. Cousot. dbstrsct interpretation frameworks. Journal of
L,ogzc and Compututio n. 2 (4) :5 11-54;, 1992.
P. Cousot and R. Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretacion. In Proceedings of the
Seventh 3 CM Confezxco on Functional Pragrmizx ing Languages and Corn-
puter -Architecture, pages 170-181. ACM Press, New York, NY-, 1995.
P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record o f the Fifth Annual ilCW
SIGPLAN-SIGA C T Symposium o n Principles of Programming Languages.
pages 84-97. -4CM Press. Yew k-ork? NY, 1978.
P. Cousot. Semantic foundations of program -analysis. In S.S. Muchnick
and N.D. Jones, editors: Program Flow An,nlysisr Theory m d Applicatzon..s,
chapter 10, pages 303-342. Pientice-Hal!, Inc., Englex-ood CliEs, 1981.
Satish Chandra and Thomas W. Reps. Physicd type checking for c. In
Workshop on Program Analysis For Software Tools and Engzneering, pages
ti6-75, 1999.

-....- pLv6LauLa. I- In LDrocediajs o: 2zd I z i e z z t z c x d Sy~~posaurn Prograzz i zg ,

[DasOO] Manuvir Das. Unification-based pointer analysis with directional assign-
ments. A C M SIGPLAN i‘iotices: 35(5):35-46, 2000.

iDeu921 A. Deutsch. -4 storeless model of aliasing and its abstraction using finite
representations of right-regular equivalence relations. In Proceedings of the
1992 International Conference on Computer Languages, pages 2-13. IEEE
Computer Society Press, 1992.

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
lirnizing. In .4 C M SIGPL,AN’94 Conference on Programming Language De-
sign and Implementataon. -4CM Press, 1994.

/FFSA.98] Manuel Fahndrich: JeiIrey S. Foster, Zhendong Su, and Alexander Aiken.
Partial online cycle elimination in inclusion consrraint graphs. il CM SIG-
P L A N Notices. 33 I5):85-96, 1998.

[GraS 11

[HOM]

[HTOlJ

[Kar 761

[MinOl]

[Ste96]

[tXO4]

[Ven96]

/Ven99]

[Ve1102]

jWLO2j

, \ I

P. Granger. Static analysis of linear congruence equdicies among variables
of a program. In TAPSOFT’91, volume 493. Lecture Notes in Computer
Science, 1991.
Nevin Heintze, Din0 OLiva: and Dave MacQueen. The ckit front-end.
ckitQresearch.bel1-labs.com.
Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A
million lines of c code in a second. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 254-263, 2001.
M. Karr. -4ffine relationships among variables of a program. Acta Informat-
zca. pages 133-151, 1376.
A. bIinC. The octagon abstract domain. In AST 2001 at WCRE 2001: IEEE:
pages 310-319. IEEE, CS Press, October 2001.
Bjarne Steensgaard. Poincs-to analysis by type inference of programs with
structures and unions. In Computational Compleszty, pages 136-1501 1996.
-4. Venet and G. Brat. Precise and eifcienr sratic array bound checking for
large embedded C programs. In Pr0ceeding.s of the International Conference
on Programming Language Deszgn and Implementation, PLDI’Q. 2004. To
appear.
-4. Venet. Abstract cofibered domains: -4pplication to ihe alias analysis of
untyped programs. In Proceedsngs of S.4S’96. volume 1145 of Lecture Notes
zn Computer Science, pages 266-392. Springer Verlag, 1996.
A. Srenez. Automatic analysis of poincer aliasing for untyped programs.
Science of Computer Programming, 35(2):223-248, 1999.
A. Venet. Sonuniform alia? analysis of recursive data structures and ar-
rays. In Proceedings o j the 9th Internatzonal Symvoszum on Static Analyszs
SAS’O2, volume 2477 of Lecture IVotes in Computer Science. pages 36-51.
Sprmger, 2002.
John Whaley and Monica S. Lam. An efficient inclusion-based points-to
analysis for strictly-typed languages. In Proceedings of the Sth International
Static Analysis Symposium, pages 180-195, September 2002.

